#### **Nanotechnology Course/Ph-457**

#### **Lecture 7**

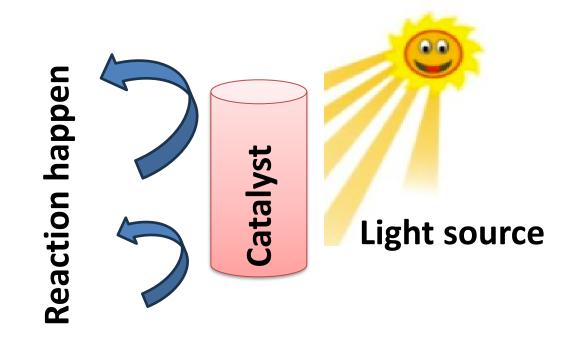
# Chapter 4: Application of Nanomaterials

By

Dr. Marwah Jawad Kadhim



Photocatalysis


Photo Energy in the form of light (UV or Visible)

Catalysis 

Makes reaction faster (nanomaterials (catalyst))



Principle of photocatalysis

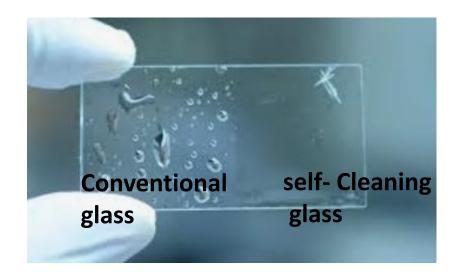


#### Photocatalyst type

- ✓ Powder
- ✓ Thin films

What is Photocatalysis?

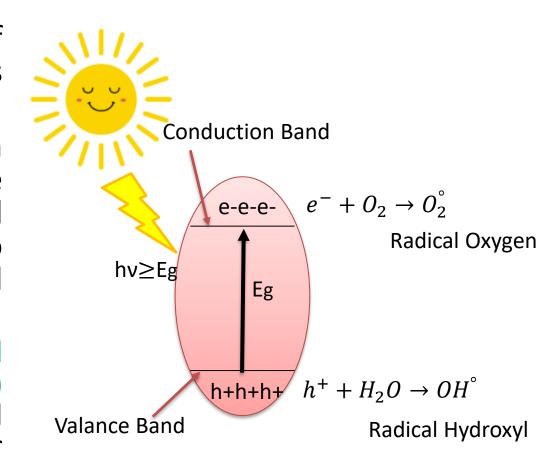
Photocatalysis is defined as the initiation of a chemical reaction under the action of light radiation in the presence of a substance.


- Type of photocatalysis
- Homogeneous photocatalysis
- Heterogeneous photocatalysis



- Why photocatalyst?
- ✓ Photocatalysts are relatively cheap (Photocatalysts are made from inexpensive raw materials)
- ✓ Photocatalysts are saving (a UV or visible lamp can initiate the photocatalysis process)
- ✓ Photocatalysts are environmentally friendly (photocatalysts convert hazardous contaminants into harmless substance  $CO_2$  and  $H_2O$ )




- Photocatalyst application
- ☐ self- Cleaning Glass
- ☐ Pollutant treatment such as wastewater
- ☐ Photocatalytic water splitting (Hydrogen Production)
- ☐ Solar water disinfection
- ☐ crude oil decomposition





- Pollutant treatment (degradation pollution)
- ➤ Pollution is defined as added substances harmful to the environment, such as organic and inorganic pollution or bacteria in water or air.
- Photocatalysts can be placed in contact with the reactants (pollutants)
- ➤ Organic pollution, such as dyes (Methylene Blue (MB), Methylene Orange (MO), Congo red, ...)
- Inorganic pollution, such as heavy metals (Arsenic, cadmium, chromium, copper, nickel, lead, and mercury)
- ➤ Photocatalysts such as semiconductors (such as ZnO) or modified semiconductors (such as Ag/ZnO, SnS/ZnO)

- How does the mechanism of photocatalyst for treatment pollutants work?
- ➤ In general, when light is incident on the catalyst, the charge carriers in the Valence Band become excited and separate, and the electrons move to the Conduction Band, leaving behind holes.
- Photocatalyst reaction make radical oxygen  $(O_2)$  and radical hydroxyl (OH) with very strong oxidation power will destroy all bacteria and other contaminants into  $CO_2$  and  $H_2O$



#### Photocatalytic efficiency

Photocatalytic efficiency (PE%) is the number of degraded molecules formed per one quantum of light absorbed by the photocatalytic system.

$$PE \% = \frac{A_o - A_t}{A_o} \times 100\%$$
 or  $PE \% = \frac{C_o - C_t}{C_o} \times 100\%$ 

$$PE \% = \frac{C_o - C_t}{C_o} \times 100\%$$

Where  $A_o$  is initial absorbance,  $A_t$ is absorbance After time t,  $C_0$  is the concentration of initial, and  $C_t$ concentration after time t.

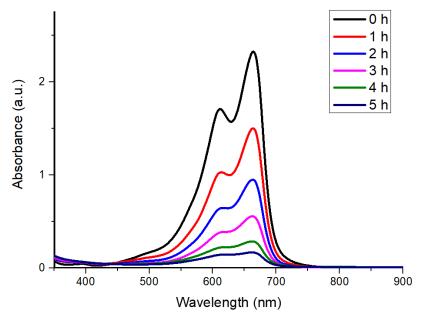



Figure: absorbance spectra of the photodegradation MB dye By using Au/SnS photocatalysts

- Ex: Calculate photocatalytic H.W: Calculate photocatalytic efficiency (PE%) of the degradation Methylene Blue dye by using CdS NPs as catalysts when initial absorbance is 2.325 a.u and decreased to 0.313 a.u after 240 min
- Sol:  $PE \% = \frac{A_o A_t}{A_o} \times 100\%$  $PE \% = \frac{2.325 - 0.313}{2.325} \times 100\%$ *PE* %=86.5%

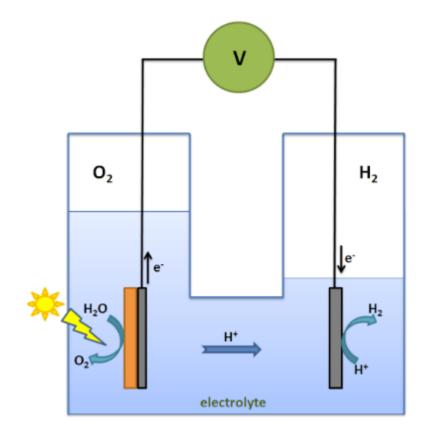
efficiency (PE%) of the degradation of Methylene Blue dye by using ZnO NRs for all times as shown in the following data:

| t (min)  | 0     | 30   | 60   | 90  | 120   |
|----------|-------|------|------|-----|-------|
| A (a.u.) | 2.325 | 1.69 | 0.67 | 0.5 | 0.214 |

#### Parameters Affecting the Photocatalytic Efficiency of the pollution:

- 1) Surface Morphology (thickness of film, grain size, porosity, surface roughness)
- 2) Band gap of photocatalysts
- 3) Rate recombination of excited electrons and holes.
- 4) Calcination and annealing temperature and temperature of the pollutants.
- Pollution pH
- 6) Photocatalyst loading
- 7) Light intensity and wavelength
- 8) Dye type or type of pollution




Figure: Gumball in wastewater plant

- Water splitting (Hydrogen Production)
- ➤ Water splitting is a process that enables hydrogen production by direct water decomposition in its elements.
- Photocatalytic water splitting is a promising option for hydrogen production, which is oriented toward reducing CO<sub>2</sub> emissions and using renewable resources such as water and sunlight.

## Parameters Affecting the Photocatalytic Water Splitting

- 1) Size and morphology of the nanostructure Electrolyte temperature
- 2) Electrolyte pH
- 3) Particle size and defect and high crystallinity
- 4) Band gap energy > 1.23 eV
- 5) Intensity light and type

- Mechanism of photocatalytic water splitting
- generation of charge carrier (e-h) pairs upon light irradiation on the photo-anode.
- oxidation of water by photo-generated holes on the photo-anode surface to give O2 and H+
- transfer of photo-generated electrons through an external circuit to the cathode
- reduction of H+ by photo-generated electrons on the cathode surface to give H2



Catalysts 2012, 2(4), 490-516

